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Perturbative and nonperturbative parts of eigenstates and local spectral density of states:
The Wigner-band random-matrix model
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The Wigner-band random-matrix model is studied by making use of a generalization of Brillouin-Wigner
perturbation theory. Energy eigenfunctions are shown to be divided into perturbative and nonperturbative parts.
Several perturbation strengths predicted by the perturbation theory are found to play important roles in the
variation of the shape of the local spectral density of states with perturbation strength.
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The average shape of energy eigenfunctions~EF’s!, char-
acterizing the spreading of perturbed eigenstates over un
turbed eigenstates, is of importance in a wide range of ph
cal fields, from nuclear physics to condensed-matter phy
~see, e.g.,@1–6#!. Recently, another important quantity, th
so-called local spectral density of states~LDOS!, has also
attracted lots of attention~see, e.g.,@5–9#!. This quantity
gives information about the ‘‘decay’’ of a specific unpe
turbed state into other states due to interaction. In particu
the width of LDOS defines the effective ‘‘lifetime’’ of the
unperturbed state. Numerically, it is already known that
Hamiltonian matrices with band structure generally both
average shape of EF’s and that of LDOS can be divided
two parts: central parts and tails with exponential~or faster!
decay. However, an analytical definition for such a divisi
has not been achieved yet. A possible clue for this prob
comes from a generalization of the Brillouin-Wigner pertu
bation theory~GBWPT! introduced in Ref.@10# for studying
long tails of EF’s, which tells that analytically EF’s can b
divided into perturbative and nonperturbative parts with p
turbative parts expanded in a convergent perturbation ex
sion. The relationship between central parts and nonpe
bative parts of EF’s was not studied in Ref.@10#, but it is
quite important as well.

The so-called Wigner-band random-matrix~WBRM!
model was introduced by Wigner more than 40 years
@11# for the description of complex quantum systems as
clei. It is currently under close investigation~see, e.g.,@12–
17#! since it is believed to provide an adequate descript
also for some other complex systems, e.g., the Ce atom@5#,
and as well as for dynamical conservative systems poss
ing chaotic classical limit. Having been studied extensiv
both analytically and numerically, many of the properties
the WBRM are already known clearly, especially, analyti
techniques for studying the LDOS of the WBRM have be
developed quite well@7#. However, there are still some prop
erties of the model which have not been studied, e.g.,
division of EF’s into perturbative and nonperturbative par
It is such properties of the model that we are to study in t
paper by making use of the GBWPT.

The Hamiltonian matrix of the WBRM model studied
this paper is chosen of the formHi j 5(H01lV) i j 5Ei

0d i j
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1lvij , whereEi
05 i ( i 51, . . . ,N) are eigenenergies of th

eigenstates ofH0 labeled byu i & and l is for adjusting the
perturbation strength. Off-diagonal matrix elementsv i j 5v j i

are random numbers with Gaussian distribution for
<u i 2 j u<b (^v i j &50 and^v i j

2 &51) and are zero otherwise
Hereb is the bandwidth of the Hamiltonian matrix andN is
its dimension. Eigenstates ofH, labeled byua&, are also or-
dered in energy,Hua&5Eaua&.

Before discussing properties of the WBRM, let us fir
cite two results of the GBWPT in Ref.@10#. The first one is
that, an eigenstateua& can be divided into a nonperturbativ
~NPT! part ut&[Pua& and a perturbative~PT! part u f &
[Qua& by two projection operatorsP5( i 5p1

p2 u i &^ i u and Q

512P, where p1 and p2 are determined by two require
ments:~i! (p22p1) has the smallest value,~ii !

lim
n→`

^au~T†!nTnua&50, ~1!

whereT5@1/(Ea2H0)#QlV. ~Subscriptsa for the opera-
tors P andQ, etc., are omitted for brevity.! The PT partu f &
can be expanded in a convergent perturbation expansio
making use of the NPT partut& even when perturbation is
strong. The second result is that, defining the size of the N
part ut& as Np[p22p111, the perturbation strength a
which Np5b, denoted bylb , is of importance since the
structure of the perturbation expansion ofu f & for the case of
Np>b is different from that forNp,b. Another perturbation
strength of interest is the smallestl for Np52, labeled by
l f , which indicates the beginning of the invalidity of th
ordinary Brillouin-Wigner perturbation theory.

Introducing an operatorU[QV@1/(Ea2H0)#Q and its
eigensolutionsUun&5unun&, one can show that the conditio
~1! is equivalent to the requirement that all the values
ulunu are less than one. Then, using the perturbation exp
sion of the PT part ofua& and an expansionQlVut&
5(nhnun&, one can show that each componentCa j5^ j ua&
with j P@p12(m11)b,p12mb) or (p21mb,p21(m
11)b#, wherem>0, can be expressed as

Ca j5
1

Ea2Ej
0 (

n
F hn

12lun
^ j un&G~lun!m. ~2!
952 ©2000 The American Physical Society
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Since ulunu,1 for all n, the behavior of the long tails o
EF’s of the WBRM is more or less like exponential decay.
fact, from the viewpoint of the GBWPT, the proof and arg
ments given in Ref.@5# for exponential-like behaviors o
long tails of the LDOS of the WBRM are still valid whe
perturbation is strong. Equation~2! shows that the decayin
speed ofuCa j u for m50 should be slower than that form
.0. The two regions (p2 ,p21b# and @p12b,p1) will be
called thesloperegions of the eigenstateua&.

Now let us study the division of EF’s into perturbativ

FIG. 1. The average shape of EF’s in the middle energy reg
for l50.6, b510, andN5300. The vertical dashed-dot lines ind
cate positions of the averaged boundaryp1

a andp2
a of the NPT parts

of the EF’s.

FIG. 2. Values ofuCaku2 ~circles! for two statesua& when l
51.4. Vertical dashed-dot lines indicate positions of the bounda
p1 andp2 of the NPT parts of the states.
~PT! and nonperturbative~NPT! parts numerically. For an
EF of an H matrix obtained by numerical diagonalizatio
the boundary of its NPT part is calculated by finding t
pair~s! of (p1 ,p2) with the smallestNp ensuring that condi-
tion ~1! holds. In order to check the results thus obtain
eigenvalues oflU are also calculated. The shape of
eigenstateua& in the unperturbed states can be defined
Wa(E0)5(kuCaku2d(E02Ek

0), whereCak5^kua&. In order
to obtain the average shape of eigenstates, we exp
Wa(E0) with respect toEa before averaging. The averag
shape of eigenstates, denoted byW(Es

0), can also be divided
into a NPT part and a PT part by the averaged boundar
the NPT parts of the statesua&, denoted byp1

a[^p12Ea&
and p2

a[^p22Ea&, respectively. The average size of th
NPT parts of eigenstates is^Np&[^p22p111&.

The first numerical result we present is for the case
N5300, b510, andl50.6. This is a case for whichNp can
be equal to both 1 and 2. The average shape of EF’s foa
from 130 to 170 is given in Fig. 1 with the boundariesp1

a and
p2

a indicated by vertical dashed-dot lines. Then, we incre
the value ofl to 1.4. For thisl, Np5b for some of the
eigenstates, e.g.,Np59,10 fora5148,149, respectively. In-
dividual EF’s for the twoua& are given in Fig. 2 with their
boundaries of the NPT parts. The average shape of EF’
the middle energy region forl51.4 is presented in Fig. 3~a!,

n

s

FIG. 3. ~a! Same as in Fig. 1 forl51.4. ~b! Same as in~a! in
logarithm scale.
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the main body of which lies obviously in the averaged N
region. Figure 3~a! also shows why the two regions@p1

a

2b,p1
a) and (p2

a ,p2
a1b# are called ‘‘slope’’ regions. Figure

3~b! shows that, as predicted above, the decaying spee
the averaged EF’s in the two slope regions is obviou
slower than that in the long-tail regions.

A feature of the WBRM model is that in some regimes
the parameter there would appear the so-called localiza
in the energy shell@12#. Behaviors of EF’s in their NPT
regions in these regimes of the parameter are different f
that shown in Fig. 2. For example, as shown in Fig. 4, wh

FIG. 4. Same as in Fig. 2 forl530.0, b510, andN5900 in
logarithm scale.

FIG. 5. Circles show the values of^Np& and the triangles show
the half-width of the LDOS (N5500,b510). The three solid
straight lines are fitting lines. The upper-left inset shows the fitt
curves of the quadratic form for^Np& and for the half-width of the
LDOS, respectively, forl from 0.4 to 1.5. The lower-right inse
shows the values ofDNp ~circles!.
of
y

f
n

m
n

l530, b510, andN5900, the main bodies of the EF’
occupy only part of their NPT regions betweenp1 and p2.
This property of the EF’s could explain the phenomenon
localization in the energy shell. In our opinion, the localiz
tion is in fact localization of EF’s in their NPT regions. Fig
ure 4 also shows that although many components of the N
parts of the EF’s are quite small, their decaying speed
obviously slower than that in the PT parts of the EF’s. T
average shape of the EF’s in this case has been found s
ing similar features as in Fig. 3 with respect to the NP
regimes.

In order to have a clear picture for the variation of t
average sizêNp& of NPT parts of EF’s withl, we plot it in
Fig. 5 by circles. Numerically we have found thatl f min , the
smallestl f , is about 0.4 and̂lb&'1.5. Figure 5 shows tha
^Np& has four types of behavior separated by three value
l, namely, l f min , ^lb&, and ls'4.5. When l,l f min ,
^Np&50. In the region of (l f min ,^lb&), the value of^Np&
has a quadratic dependence onl ~upper-left inset!. When
l.^lb&, the dependence of^Np& on l becomes linear, bu
the slope forl,ls is different from that forl.ls . The
variance ofNp , denoted byDNp , is small compared with
Np as shown in the lower-right inset of Fig. 5~circles!.

The local spectral density of states~LDOS! for an unper-
turbed stateuk& is defined asrL

k(E)5(auCaku2d(E2Ea).
The average shape of the LDOS, denoted byrL(Es) ~sub-
scripts will be omitted!, can be obtained in a way similar t
that for the EF’s discussed above, except thatrL

k(E) are
expressed as functions of (E2Ek

0) before averaging. Proper
ties of the LDOS of the WBRM have already been stud
well ~see, e.g.,@5,12,14#!, especially, the corresponding an
lytical techniques have already been developed well@7#. The
reason for us to pay some attention to it in this paper is t
the role of lb and ls has not been discussed in previo
work.

Let us first study the transition of the average shape of
LDOS from the Breit-Wigner form to the semicircle form
For this we make use of two quantitiesDSBW
5* urL(E)2rBW(E)udE and DSsc5* urL(E)2rsc(E)udE,
which measure the deviation of the LDOSrL(E) from its
best fitting Breit-Wigner form and from the semicircle form
respectively,

g

FIG. 6. Variation ofDSsc ~circles! andDSBW ~squares! with l
(N5500,b510).
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rBW~E!5
G/2p

E21G2/4
, rsc~E!5

2

pR0
2
AR0

22E2, ~3!

where R05lA8b. Variation of the two quantitiesDSBW
~squares! andDSsc ~circles! with l are given in Fig. 6. Forl
a little larger thanl f min , as is well known, the LDOSrL(E)
is close to the Breit-Wigner form andDSBW is small. When
l reacheŝlb&'1.5, the LDOSrL(E) is absolutely different
from the Breit-Wigner form, while it becomes close to th
semicircle form. Whenl is larger thanls'4.5, the value of
DSsc becomes quite small, indicating that the LDOS is
ready quite close to the semicircle form. Since the semici
form rsc(E) obeys a scaling law underE→E/l, rsc
→lrsc, andR0→R0 /l, when the LDOSrL(E) is close to
the semi-circle form, it should obey an approximate scal
law. Therefore, the perturbation strengthls can be regarded
as characterizing the beginning for the LDOS to obey a g
approximate scaling law. Second, let us study the half-wi
.
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-
le
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of the average shape of LDOS, the variation of which
given in Fig. 5 by triangles. We see that the well-know
quadratic dependence and linear dependence of the
width on perturbation strength is separated by the pertu
tion strengtĥ lb&.

In conclusion, in this paper numerically it is shown th
the central part of the average shape of EF’s is compose
its nonperturbative~NPT! part and the slope region of it
perturbative~PT! part predicted by the GBWPT. Three pe
turbation strengths related to properties of the size of N
parts of EF’s, namely,l f , lb , andls , have been found also
to play important roles in the variation of the shape of t
LDOS.
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